S18-SSTHS1-R5SA5-30
 Magnet Detecting Speed Switch

> Moving Magnet Actuated Speed Switch, 55 Gauss sensitivity
> Transistor output for Over or Under Speed
> Regulated input, NPN with 5k pull-up
$>$ Stainless $18 \times 1 \mathrm{~mm} \times 53 \mathrm{~mm}$ housing
> Shielded 4 wire 22 AWG $80^{\circ} \mathrm{C}$ PVC, 5ft

CUSTOMER FOCUSED ENGINEERING + MODULAR DESIGN

- Modify, update, or enhance any sensor with our modular features and functionality.

> HOUSING -Aluminum, stainless steel, plastic, threaded, flange mount, customer specific

ELECTRICAL - Every sensor function available in various electrical options (NPN, PNP, TTL, etc.)

CONNECTION - Deutsch, Amphenol, many other brands, free end wires, pigtails, any length

Need a Custom Sensor Solution?... Send us your application specific requirements at sensorso.com
'South Pole Magnet Actuated Speed Switch with Transistor Output' Overspeed, Underspeed, Zero-Speed

OUTPUTS

Type-SSM

DESCRIPTION

- Speed switch output turns on/off dependent on factory programmed frequency.
- 30 Hz switch point will activate the output at any speed where 30 or more magnets pass the sensor within 1 second. Contact us for lower or higher switching speeds.
- Single channel digital square wave output for resolving actual speed.
- Detects the South Pole field from permanent magnets using Hall Effect Technology
- Detects south pole fields of 55 Gauss or more. Operate gap range dependent on magnet size/type
- No orientation required. Use lock nuts to set air gap within range of target

FEATURES

- Non-contact speed measurement
- No Orientation Required
- Add -xxx in Hz to End of PN - contact factory for custom switch point models

S18-SSTHS1-R5SA5-30
 Magnet Detecting Speed Switch

OTHER OPTIONS

As well as these Ferrous Target Speed Switches, we offer Magnet / Magnet Tape activated Speed Switches, and Gear Tooth Speed Switches designed to work with standard gears. We have options for relay outputs, NPN outputs, and TTL outputs.

Note: Check our website or contact us to discuss any of our magnetic speed, count, and position detection sensors.

Electrical Specifications	Conditions	Min	Max	Unit
Temperature Range	Operating	-40	+110	Deg C
Supply Voltage, Vcc	Over temperature	+8	+30	Volts DC
Supply Current	Into Vcc	2.5	12	mA
Internal Pull up Resistor	Vcc to +5 V	4.9	5.1	kOhms
Vol, Low Level Vout	Vcc $=12 \mathrm{~V}$, Rload $>100 \mathrm{k}$	0.0	0.7	Volts
Voh, High Level Vout	Vcc $=12 \mathrm{~V}$, Rload $>100 \mathrm{k}$	11.75	12	Volts
Overspeed TRIP Frequency	Output goes low above	28	31	Hz
Underspeed Release Freq.	Output goes high below	24	27	Hz
ESD (like product qualified)	Nondestructive	-	2000	Volts
EMI (like product qualified)	20k to 1 G Hz	-	20	$\mathrm{~V} / \mathrm{M}$

Grey shaded specs are 100\% Final tested before shipping

Rev C

Rev E

SA5, Shielded 4 Wire 22 AWG $80^{\circ} \mathrm{C}$ PVC

Rev CED

Page 2

Absolute Max Limits	Min	Max	Unit
Supply Voltage, Vcc-Gnd	-32	+32	Volts
Voltage at Output	-.3	30	Volts
Sink Current into Output	-	50	mA
Short Circuit Prot. Vout-Gnd	-	Indef.	Minutes
Short Circuit Prot. Vout-+Vcc	-	None	Minutes

Environmental Specifications	
Corrosion Resistance	500 hours salt spray ASTM B-117
Installation Torque	60 Foot-Pounds Maximum
Enclosure	Nema $1,3,4,6,13$ \& IEC IP67
Vibration	10 G's 2 to 2000 Hz Sinusodal
Mechanical Shock	100 G's 11 mS Half-Sine

Sensor Characteristics - S Pole Sensitive			
Output State at O Speed: High (Transistor Off)			
Operate Point Over Temp 100% Tested at $25^{\circ} \mathrm{C}$ before shipping	15 G	55 G	76 G
Release Point Over Temp	5 G	35 G	57
Hysteresis Over Temp	5 G	20 G	28 G
TRIP Frequency Accuracy, Output LOW	98\%	1.0\%	1.01\%*
RELEASE Frequency Accuracy, Output HIGH	.99\%***	1.0\%	1.02\%
STOP DETECT TIME, Output returns high after sudden stop		ns(Typ	
* Gap the sensor to make sure it sees $>77 \mathrm{G}$ when close, $<17 \mathrm{G}$ when far.			
** Output is LOW if teeth are passing by faster than 1.02 * Trip Frequency.			
***Output is HIGH if teeth are passing by slower than 0.99 * Release Frequency			

Convert RPM to Hz

Over/Under Speed Trip Points are in Hz, pulses per second.
To convert RPM (Revolutions per Minute) to Hz, you need to know the target's pulses per revolution, " N ". A target with 2 S pole magnets will produce 2 pulses per revolution, so $\mathrm{N}=2$.
$H z=\operatorname{RPM}^{*}(\mathrm{~N} / 60)$. Or RPM $=\mathrm{Hz} *(60 / N)$.
Example: Using 2 magnets and a 30 Hz trip point, $R P M=30 *(60 / 2)$ so the output switches low at 900 RPM.

Connections Chart

Red Vcc	Black Ground
Green Pulse Vout	White Switch Vout
	S18-SSTHS1

OTHER MATING CONNECTORS AND CABLES AVAILABLE

S18-SSTHS1-R5SA5-30

Magnet Detecting Speed Switch

R5, Regulated, 5k Resistor

Date Code 'YYM' $\mathrm{YY}=\mathrm{YEAR}, \mathrm{M}=\mathrm{MONTH}$					
A JAN	D APR	H JUL	L OCT		
B FEB	E MAY	J AUG	M NOV		
C MAR	G JUN	K SEP	N DEC		

Marking

CHARACTERISTIC-OPTION_TRIP SPEED
MARKED ON THIS SURFACE
fff $=$ SWITCH FREQUENCY IN Hz \#

Handling Instructions
DO NOT CONTACT
FACE TO FACE

CONTACT WITH OTHER MAGNETS MAY REDUCE THE MAXIMUM OPERATING GAP

[^0]
[^0]: Please note: All technical specifications on this series datasheet refer to the standard product range. Modifications in the sense of technical progress are reserved. For general information only. For more specific information, please consult the product datasheet, available upon request.

 This series datasheet could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein. These change will be incorporated in future revisions.

 For deviating values, most current specifications and products please contact your nearest sales office.

