CONTENTS

03 About Standex
04 Who We Are / Where We Play
06 Our Capabilities
08 Our Approach & Process
10 Planar Magnetics
12 Customer Configurations
16 10W-1kW Transformers & Inductors
24 1kW-10kW Transformers & Inductors
36 10kW-250kW Transformers & Inductors
43 PQ Planar Inductors

ABOUT STANDEX

Customer Focused Engineering Solutions. “Innovating for more than 50 years.”

The Standex Electronics business, a division of Standex International Corporation (NYSE:SXI), has been providing solutions, through high-performing products since the 1950’s. Through growth, acquisition, strategically partnering with customers, and applying the latest engineering designs to the needs of our ever-changing world, Standex Electronics technology has been providing quality results to the end-user. The approach is achieved by partnering with customers to design and deliver individual solutions and products that truly address customers’ needs.

Standex Electronics is headquartered in Cincinnati, Ohio, USA. Standex Electronics has nine manufacturing facilities in six countries, located in the United States, Germany, China, Mexico, the United Kingdom, and Japan.

That’s Standex | Smart.
WHO WE ARE / WHERE WE PLAY

Powerfully transforming. “When failure is not an option, designers of critical electronic components rely on Standex and their decades of experience.”

We offer engineered product solutions for a broad spectrum of product applications in all major markets, including but not limited to:

• Aerospace & Military
• Alternative Energy
• Automotive (EV) & Transportation
• Electric Power & Utilities
• Medical
• Smart Grid & Metering
• Industrial & Power Distribution
• Test & Measurement
• Security & Safety
• Household & Appliances

Our values and what we believe align to the partner, solve, and deliver® approach. We produce parts but we are more than that. Connecting with your team as a strategic partner, listening to your challenges, and arriving at ways to solve your complex problems through our solutions are why we exist. We have custom capabilities that address your needs. Our team leverages our dynamic and diverse engineering expertise and other resources such as our global facilities for logistics and production.

Standex Electronics is a worldwide market leader in the design, development and manufacture of custom magnetics and power conversion components and assemblies. Our work, growth, and dedication to providing reliable high-quality products through our engineering and manufacturing expertise go beyond products we ship.

Seit über 50 Jahren ist Standex Electronics auch innovatives Unternehmen mit neuesten Produkten, unterschiedlichsten Kundenprojekten und dem Ausbau unserer globalen Präsenz am Markt verantwortlich und kann dadurch ein stetiges Wachstum verzeichnen.

WHO WE ARE / WHERE WE PLAY

Powerfully transforming. “When failure is not an option, designers of critical electronic components rely on Standex and their decades of experience.”

We offer engineered product solutions for a broad spectrum of product applications in all major markets, including but not limited to:

• Aerospace & Military
• Alternative Energy
• Automotive (EV) & Transportation
• Electric Power & Utilities
• Medical
• Smart Grid & Metering
• Industrial & Power Distribution
• Test & Measurement
• Security & Safety
• Household & Appliances

Our values and what we believe align to the partner, solve, and deliver® approach. We produce parts but we are more than that. Connecting with your team as a strategic partner, listening to your challenges, and arriving at ways to solve your complex problems through our solutions are why we exist. We have custom capabilities that address your needs. Our team leverages our dynamic and diverse engineering expertise and other resources such as our global facilities for logistics and production.

Standex Electronics is a worldwide market leader in the design, development and manufacture of custom magnetics and power conversion components and assemblies. Our work, growth, and dedication to providing reliable high-quality products through our engineering and manufacturing expertise go beyond products we ship.

Seit über 50 Jahren ist Standex Electronics auch innovatives Unternehmen mit neuesten Produkten, unterschiedlichsten Kundenprojekten und dem Ausbau unserer globalen Präsenz am Markt verantwortlich und kann dadurch ein stetiges Wachstum verzeichnen.

WHO WE ARE / WHERE WE PLAY

Powerfully transforming. “When failure is not an option, designers of critical electronic components rely on Standex and their decades of experience.”

We offer engineered product solutions for a broad spectrum of product applications in all major markets, including but not limited to:

• Aerospace & Military
• Alternative Energy
• Automotive (EV) & Transportation
• Electric Power & Utilities
• Medical
• Smart Grid & Metering
• Industrial & Power Distribution
• Test & Measurement
• Security & Safety
• Household & Appliances

Our values and what we believe align to the partner, solve, and deliver® approach. We produce parts but we are more than that. Connecting with your team as a strategic partner, listening to your challenges, and arriving at ways to solve your complex problems through our solutions are why we exist. We have custom capabilities that address your needs. Our team leverages our dynamic and diverse engineering expertise and other resources such as our global facilities for logistics and production.

Standex Electronics is a worldwide market leader in the design, development and manufacture of custom magnetics and power conversion components and assemblies. Our work, growth, and dedication to providing reliable high-quality products through our engineering and manufacturing expertise go beyond products we ship.
OUR CAPABILITIES

MANUFACTURING
- 52 to Saw Magnetic Wire Winding
- Foil, Flat, & Square Wire Winding
- Automatic CNC Winding
- Bobbin, Layer, & Self-Supporting Winding
- Toroidal Hook & Shuttle Winding
- Thermoplastic & Thermoset Overmolding
- Impregnation, Coating, & Potting
- Voids-Free Vacuum Potting
- NASA Certified Soldering
- Wire Prep & Harness Assembly
- Injection Molding
- Metal & Plastic Fabrication
- Lean Manufacturing Principles
- Complete, In-House Machine Shop
- Poka-Yoke “Mistake Proofing”

ENGINEERING
- 3-D CAD Modeling
- 3-D Printing
- Mechanical Design & Packaging
- Rapid Prototyping
- Magnetic Simulation Software
- Mechanical, Thermal & FEA Analysis
- Plastic Mold Flow Simulation
- APQP Project Management

QUALITY & COMPLIANCE
- AS9100 & IATF16949 Certifications
- ITAR Compliance
- Regulatory Agency Approvals
- PRP & First Article Inspection
- SPC Data Collection

TESTING & LAB CAPABILITIES
- Automated Transformer Testing
- Medical Safety Testing
- High Voltage/Partial Discharge Testing
- Full Load & Temperature Rise Testing
- 2-D/3-D Microscopic X-ray Inspection
- Digital Microscopic Inspection
- MIL-STD-202 In-House Qualification Testing
- Mechanical, Shock & Vibration
- Burn-In & Life Testing
- Thermal Shock & Temperature Cycling
- Humidity, Salt Fog, & Solderability
- Moisture Resistance & Seal Testing

Registered AS9100 ISO9001 CERTIFIED ITAR 16949

That's Standex Strong.

standexelectronics.com
Our Process

- Open Engineering Team Dialogue
- Footprint Negotiations
- Optimize Efficiency
- Electrical & Thermal Modeling
- Preliminary Design Approval
- Identify Custom Components
- Specify Terminations
- Thermal Management Design
- Generate Print & Quotation
- Final Design Approval
- Generate BOM
- Order Material
- Queue Samples
- Sample Build
- EL Test & Report
- Application Testing
- Feedback
- Iterations If Necessary

- Production Order
- APQP
- FAL
- DFMEA & PFMEA
- Line Audit
- FAI
- PPAP
- Delivery
- Sustaining Engineering

Complex problems deserve custom solutions - As your "application engineering experts", we deliver custom design, development, and manufacture of reliable high-quality planar magnetics that are used across all major markets.

Fill out a design request today!
Planar magnetics offer improved power density and performance compared to equivalent wire wound designs.

PLANAR MAGNETICS

Global Design and Manufacturing
- Experienced in creating custom solutions for partners across the globe
- Capable of leveraging global supply chains on behalf of our partners
- Global manufacturing locations provides options regarding cost vs timing

Ready and Willing to Grow with Our Partners
- Part of a $1B publicly traded corporation with access to capital markets
- Able to make investments to grow our capacity along with our partners
- Forward focused supplier that you can depend on in the long run

Deep Technical Expertise
- Over 100 years of custom magnetics design experience
- Capable of proving design calculations, simulations and prototype samples
- Portfolio of technical solutions developed through years of custom designs
- US Patent 7,129,809 for surface mount header
- US Patent 7,460,002 for custom terminal design
- Portfolio of technical solutions developed through years of custom designs
- US Patent 7,129,809 for surface mount header
- US Patent 7,460,002 for custom terminal design
- Custom encapsulation/opting methods to meet isolation requirements

Broad Product Portfolio and Capabilities
- Experienced manufacturer of both planar and traditional magnetic designs
- Wide power range of 25W to 250kW and frequency range of 20kHz-1MHz+
- One-stop shop able to fully test components to meet rigorous certifications

ADVANTAGES OF WORKING WITH STANDEX ELECTRONICS

Minimized Footprint
- Planar better utilizes core space, enabling more compact magnetic designs
- Standex uses ER Cores, which allows most compact designs in the industry
- Flexible termination designs allow fit into existing space with minimal redesign

Optimized Performance
- High power density enables 99%+ efficiency with significantly lower material
- Optimized core cross section and low turn count minimizes losses
- Compact design better allows heat transfer out of components

High Reliability
- Elimination of hand winding reduces part to part variation
- Use of PC boards and encapsulation methods allow high isolation
- ER core geometry reduces EMI that may interfere with sensitive equipment of custom designs

Partner in Innovation
- Experience in fully custom designs for customers large and small
- Plastic molding expertise, enabling unique isolation and value-add solutions
- Capable of providing full thermal management designs, as needed

That’s Standex | Smart.

standexelectronics.com
“Planar technology is making headway in some of the most demanding applications and emerging markets.”

We offer engineered planar magnetics solutions for a broad spectrum of product applications in all major markets. Battery charging, electric vehicles, solar inverters, aviation, healthcare, and industrial markets are just some of the areas where planar technology is gaining ground.

APPLICATIONS
Automotive, Electric & Hybrid Vehicles
Renewable Energy - Wind & PV Systems
Aerospace & Military (high reliability & repeatability)
Welding, Lasers & Test Equipment
DC-DC Converters
AC-DC Resonant Designs
Appliances
Battery Charging (12V, 24V, 48V, 1-10 kW)
Switch Mode Power Supplies
Distributed Isolated Power
Feedback Control
High Current POI Converters
High Power LED Lighting & Industrial Power
Isolated Inverters
Isolated (unregulated) Bus Conv (Vout 9-12V)
Server – Data Centers (400VDC)
Telecom (“Sweet Spot” 36-72 Vin 40-250W)

“Planar transformers and inductors are the ideal solution for efficient SMPS applications.”

BATTERY MANAGEMENT SYSTEM
Power Range 250W
- Transformer

DC/DC CONVERTER
Power Range 1W - 76W
- Main Transformer
- Output Choke
- Resonant Inductor

FAST CHARGER
Power Range 75W - 100W
- Main Transformer
- Resonant Inductor

ONBOARD CHARGER
Power Range 3.5kW - 6.6kW
- Main Transformer
- Resonant Inductor

RAPID CHARGER
Power Range 10kW - 100kW
- Main Transformer
- Resonant Inductor

DC/DC CONVERTER
Power Range 1W - 76W
- Main Transformer
- Output Choke
- Resonant Inductor

ONBOARD CHARGER
Power Range 3.5kW - 6.6kW
- Main Transformer
- Resonant Inductor

BATTERY MANAGEMENT SYSTEM
Power Range 250W
- Transformer

DC/DC CONVERTER
Power Range 1W - 76W
- Main Transformer
- Output Choke
- Resonant Inductor

ONBOARD CHARGER
Power Range 3.5kW - 6.6kW
- Main Transformer
- Resonant Inductor

RAPID CHARGER
Power Range 10kW - 100kW
- Main Transformer
- Resonant Inductor

“Planar transformers and inductors are the ideal solution for efficient SMPS applications.”

“Planar technology is making headway in some of the most demanding applications and emerging markets.”

We offer engineered planar magnetics solutions for a broad spectrum of product applications in all major markets. Battery charging, electric vehicles, solar inverters, aviation, healthcare, and industrial markets are just some of the areas where planar technology is gaining ground.
CUSTOMER CONFIGURATIONS

- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions: heat sinks, etc.
- Multiple terminal/termination options
- Inductors available for design in all packages
- Value-added assemblies

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

<table>
<thead>
<tr>
<th>Size</th>
<th>Optimum Power Range</th>
<th>Maximum Current Rating</th>
<th>Optimum Frequency Range</th>
<th>Isolation Pre-Core</th>
<th>Pre-Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>025</td>
<td>10 - 50 W</td>
<td>14 A</td>
<td>25 V</td>
<td>17 V</td>
</tr>
<tr>
<td>Mid</td>
<td>035</td>
<td>20 - 150 W</td>
<td>15 A</td>
<td>30 V</td>
<td>23 V</td>
</tr>
<tr>
<td>High</td>
<td>055</td>
<td>50 - 200 W</td>
<td>16 A</td>
<td>40 V</td>
<td>25 V</td>
</tr>
<tr>
<td></td>
<td>075</td>
<td>100 - 500 W</td>
<td>17 A</td>
<td>60 V</td>
<td>25 V</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>150 - 700 W</td>
<td>18 A</td>
<td>80 V</td>
<td>29 V</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>300 - 1250 W</td>
<td>19 A</td>
<td>100 V</td>
<td>32 V</td>
</tr>
</tbody>
</table>

CUSTOM CONFIGURATIONS

- **Inductors, >30kW**
- **Thermal Solutions**, and **Custom Terminations**

HIGH POWER 10kW-250kW

- **SIZES**: 900, 2100, 4000

MID POWER 1kW-10kW

- **SIZES**: 220, 350, 560

LOW POWER 10W-1kW

- **SIZES**: 035, 055, 075, 110, 135

Surface mount solution with increased creepage and clearance

Custom 6kW transformer with narrow footprint and custom heatsink

Custom control transformer with multiple outputs
“High Frequency Efficiency”

Size 025-135 is ideally suited for low power applications with an optimal power range of 10W-1kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

APPLICATIONS
- Renewable Energy - Photovoltaic Systems
- Aerospace & Military (high reliability & repeatability)
- Test Equipment
- Switch Mode Power Supplies
- Distributed Isolated Power
- Telecommunications
- Battery Management Systems
- Automotive, Electric & Hybrid Vehicles

CUSTOMER CONFIGURATIONS
- Soft switching, single or multiple outputs
- Wide-switching frequency range
- Input/output voltages
- Optimized turns ratio
- Host interface & heat sinks, etc.
- Multiple terminal/termination options
- Custom footprints for isolation requirements

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
- Optimum Power Range: 10W - 1kW
- Current Rating Max.: 5-100A (+30% for THT)
- Optimum Frequency Range: 300 - 500kHz
- Mounting Options: Surface Mount (SMD), Through-Hole (THT)
- Topologies: Forward, Flyback, Full Bridge, Full Bridge (ZVS), Half Bridge, Half Bridge (ZVS), Push-Pull

Typical Dimensions:

<table>
<thead>
<tr>
<th>L</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-45mm</td>
<td>16-32mm</td>
<td>6-20mm</td>
</tr>
</tbody>
</table>

Length (L) May Vary Depending On Terminals
Height (H) Depending On Input & Output Requirements

That's Standex Strong.

standexelectronics.com
TRANSFORMER DESIGN | EXAMPLE - PQC2158 (U.S. PAT. 7,129,809)

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Forward w/Active Reset</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>15-42VDC</td>
</tr>
<tr>
<td>Maximum Isolation Voltage</td>
<td>2000VDC</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>300kHz</td>
</tr>
<tr>
<td>Duty Cycle at Low Input Voltage</td>
<td>53.0%</td>
</tr>
<tr>
<td>Secondary Output Voltage/Current</td>
<td>15VDC/2ADC</td>
</tr>
<tr>
<td>Maximum Efficiency At Nominal Input</td>
<td>98.2% (0.53W losses)</td>
</tr>
<tr>
<td>Secondary Resistance, Rs, Max.</td>
<td>65mOhm</td>
</tr>
<tr>
<td>Operating Ambient Range (Full Load)</td>
<td>-20°C to +85°C</td>
</tr>
<tr>
<td>Leakage Inductance, 1-2/3-4 Shorted, Typ.</td>
<td>0.2µH</td>
</tr>
<tr>
<td>Weight Range (Approximate)</td>
<td>12-50 grams</td>
</tr>
</tbody>
</table>

NOTES:
1) PATENTED HEADER AND SURFACE MOUNT TERMINATIONS PROVIDE REPEATABLE COPLANARITY FOR MANUFACTURING.
2) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

TRANSFORMER DESIGN | EXAMPLE - PQC1686

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Forward w/Active reset</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>16-72VDC</td>
</tr>
<tr>
<td>Maximum Isolation Voltage</td>
<td>2000VDC</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>300kHz</td>
</tr>
<tr>
<td>Duty Cycle at Low Input Voltage</td>
<td>61%</td>
</tr>
<tr>
<td>Secondary Output Voltage/Current</td>
<td>24VDC</td>
</tr>
<tr>
<td>Maximum Efficiency At Nominal Input</td>
<td>97.50%</td>
</tr>
<tr>
<td>Secondary Resistance, Rs, Max.</td>
<td>9mOhm</td>
</tr>
<tr>
<td>Operating Ambient Range (Full Load)</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Leakage Inductance, Typ.</td>
<td>0.75µH</td>
</tr>
<tr>
<td>Weight Range (Approximate)</td>
<td>12-50 grams</td>
</tr>
</tbody>
</table>

NOTES:
1) PATENTED HEADER AND SURFACE MOUNT TERMINATIONS PROVIDE REPEATABLE COPLANARITY FOR MANUFACTURING.
2) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

SOLUTIONS | Planar Transformers & Inductors

“Complex problems deserve custom solutions” Submit Your Design! standeelectronics.com/planar-transformer-request-form/
SOLUTIONS | Planar Transformers & Inductors

TRANSFORMER DESIGN | EXAMPLE - PQC2075

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Topology</th>
<th>Continuous Flyback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(100-600 VDC) Nominal</td>
</tr>
<tr>
<td>Temp. Rise</td>
<td>+35°C</td>
</tr>
<tr>
<td>NOTES:</td>
<td></td>
</tr>
<tr>
<td>1) CUSTOM THROUGH HOLE FLYBACK DESIGN</td>
<td></td>
</tr>
<tr>
<td>2) PATENTED SURFACE MOUNT HEADER AVAILABLE</td>
<td></td>
</tr>
<tr>
<td>3) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE</td>
<td></td>
</tr>
</tbody>
</table>

Input Voltage (100 VDC Nominal): 93-105VDC

Minimum Isolation Voltage: 1000VDC

Output Voltage/Current After Rectification: 36W (12V/3A)

Primary To Secondary And Core: 1000VDC

Secondary To Primary And Core: 500VDC

Primary To Secondary And Core: 1000VDC

Duty Cycle, Max. At Low Input Voltage: 53.0%

Leakage Inductance 1-2/3-4 Shorted, Typ.: 5µH

Efficiency At Vin=100VDC/36W Output Calculated: 97.2% (1W losses)

Operating Ambient Range (Full Load): -11°C to +70°C

Weight Range (Approximate): 12-50grams

TRANSFORMER DESIGN | EXAMPLE - PQC2018

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Topology</th>
<th>Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(100-600 VDC) Nominal</td>
</tr>
<tr>
<td>Temp. Rise</td>
<td>+40.5°C</td>
</tr>
<tr>
<td>NOTES:</td>
<td></td>
</tr>
<tr>
<td>1) CUSTOM THROUGH HOLE FORWARD DESIGN</td>
<td></td>
</tr>
<tr>
<td>2) PATENTED SURFACE MOUNT HEADER AVAILABLE</td>
<td></td>
</tr>
<tr>
<td>3) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE</td>
<td></td>
</tr>
</tbody>
</table>

Input Voltage: 47-100VDC

Minimum Isolation Voltage: 1000VDC

Output Voltage/Current After Rectification: 100W/(20VDC/5A)

Primary To Core: 500VDC

Turns Ratio - Np/Ns: 10T/10T

Secondary To Core: 1500VDC

Switching Frequency: 150kHz

Primary Inductance, Np, Min.: 250µH

Duty Cycle at Vin=47V, 1V Output Diode Drop: 45.0%

Primary Resistance, Np, Max.: 25mOhm

Duty Cycle at Vin=100V, 1V Output Diode Drop: 21.0%

Secondary Resistance, Ns, Max.: 30mOhm

Efficiency At Full Power Calculated: 98.2% (1.8W losses)

Leakage Inductance 1-2/3-4 Shorted, Typ.: 0.4µH

Ambient Temp, Max.: +70°C

Weight Range: 20-70grams

“Complex problems deserve custom solutions” Submit Your Design! | standexelectronics.com/planar-transformer-request-form/
Complex problems deserve custom solutions Submit Your Design!
standexelectronics.com/planar-transformer-request-form/

SOLUTIONS | Planar Transformers & Inductors

ELECTRICAL SPECIFICATIONS

Topology
- Full Bridge ZVS

Input Voltage
- 42-56VDC

Minimum Isolation Voltage
- 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
- 2) HEATSINK & THERMAL SOLUTIONS AVAILABLE

Output Voltage/Current After Rectification
- Ns1: 120VDC/3.5A (420W)
- Nboost: 2121VDC

Primary To Secondary
- 3T/9T

Secondary To Core
- 500VDC

Switching Frequency
- 200kHz

Primary Inductance, Np, Min.
- 27µH

Duty Cycle, Max. At Low Input Voltage
- 97.0%

Primary Resistance, Np, Max.
- 1.8mOhm

Efficiency At Full Power Calculated
- 98.95% (4.4W losses)

Secondary Resistance, Ns, Max.
- 16mOhm

External Ambient Temp, Max.
- +35°C

Leakage Inductance 1-2/3-4 Shorted, Typ.
- 50nH

Weight Range
- 50-150grams

TRANSFORMER DESIGN | EXAMPLE - PQC2183

ELECTRICAL SPECIFICATIONS

Topology
- Boost Forward

Input Voltage
- 120-150VDC

Minimum Isolation Voltage
- 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE & HEATSINK SHOULD BE UTILIZED
- 2) PATENTED SURFACE MOUNT HEADER AVAILABLE
- 3) HEATSINK & THERMAL SOLUTIONS AVAILABLE

Output Voltage/Current After Rectification
- Nboost: 200-300VDC/500-250mA
- Ns1: 0-30VDC/4A

Primary To Secondary
- Ns1 And To Core

Secondary To Core
- 500VDC

Turns Ratio - Np/Nboost/Ns
- 18T/12T/6T

Primary Inductance, Np, Min.
- 900µH

Switching Frequency
- 250kHz

Primary Resistance, Rdc, Np, Max.
- 140mOhm

Duty Cycle, Max. At Low Input Voltage
- 60.0%

Secondary Resistance, Rdc, Ns, Max.
- 18mOhm

Efficiency At Full Power Calculated
- 98.3% (2.5W losses)

Boost Winding Resistance, Rdc, Nboost, Max.
- 80mOhm

Ambient Temp, Max.
- -55°C to +85°C

Leakage Inductance 2-3/4-5 Shorted, Typ.
- 2µH

Mounted On Heatsink With Max. Temp.
- +65°C

Weight Range
- 30-120grams

TRANSFORMER DESIGN | EXAMPLE - PQC2066

ELECTRICAL SPECIFICATIONS

Topology
- Full Bridge ZVS

Input Voltage
- 12-60VDC

Minimum Isolation Voltage
- 470/500VDC

Primary To Secondary
- Ns1 And To Core

Switching Frequency
- 200kHz

Primary Inductance, Np, Min.
- 4.2µH

Primary Resistance, Rdc, Np, Max.
- 50mOhm

Duty Cycle, Max. At Low Input Voltage
- 90%

Secondary Resistance, Rdc, Ns, Max.
- 18mOhm

Efficiency At Full Power Calculated
- 98.95% (4.4W losses)

Primary To Secondary
- Ns1 And To Core

Secondary To Core
- 500VDC

Turns Ratio - Np/Nboost/Ns
- 3T/9T

Primary Inductance, Np, Min.
- 17µH

Switching Frequency
- 200kHz

Primary Resistance, Rdc, Np, Max.
- 20mOhm

Duty Cycle, Max. At Low Input Voltage
- 97.0%

Secondary Resistance, Rdc, Ns, Max.
- 25mOhm

Efficiency At Full Power Calculated
- 98.95% (4.4W losses)

Primary To Secondary
- Ns1 And To Core

Secondary To Core
- 500VDC

Turns Ratio - Np/Nboost/Ns
- 3T/9T

Primary Inductance, Np, Min.
- 17µH

Switching Frequency
- 200kHz

Primary Resistance, Rdc, Np, Max.
- 20mOhm

Duty Cycle, Max. At Low Input Voltage
- 97.0%

Secondary Resistance, Rdc, Ns, Max.
- 25mOhm

Efficiency At Full Power Calculated
- 98.95% (4.4W losses)
MID POWER // 1kW-10kW

"Meets Critical Power Demands For EV Fast Charging"

Size 220, 350, and 560 are ideally suited for mid power applications with an optimal power range of 1kW-10kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

APPLICATIONS
• Fast Charging
• Automotive, Electric & Hybrid Vehicles
• Renewable Energy
• Aerospace & Military (high reliability & repeatability)
• Welding, Soldering & Test Equipment
• Solid State Relays
• AC-DC resonant designs
• Battery Management Systems
• Switch Mode Power Supplies
• Distributed Isolated Power

CUSTOMER CONFIGURATIONS
• Soft switching, single or multiple outputs
• Wide switching frequency range
• Input/output voltages
• Optimized turns ratio
• Thermal solutions heat sinks, etc.
• Multiple terminal/termination options
• Value-added assemblies

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range: 1kW - 10kW
Current Rating Max.: 45-72A (+30% for THT)
Optimum Frequency Range: 40 - 250kHz
Mounting Options: Through-Hole (THT)
Topologies:
- Full Bridge, Full Bridge (ZVS), Half Bridge, Half Bridge (ZVS), Push-Pull, Resonant

 Typical Dimensions:

<table>
<thead>
<tr>
<th>L (Length)</th>
<th>W (Width)</th>
<th>H (Height)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-72mm</td>
<td>41-64mm</td>
<td>18-31mm</td>
</tr>
</tbody>
</table>

Length (L) May Vary Depending On Terminals
Height (H) Depending On Input & Output Requirements

That’s Standex|Smart
standexelectronics.com
TRANSFORMER DESIGN | EXAMPLE - PQC1834

Electrical Specifications

Topology

Full Bridge ZVS

Input Voltage

350-450VDC

Primary To Secondary And Core

1000VAC

Minimum Isolation Voltage

NOTES:

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED

2) PATENTED TERMINALS AVAILABLE FOR SHIELDING ON HIGH CURRENT WINDING

Output Voltage/Current After Rectification

800W (320VDC/2.5ADC)

Primary To Core

500VAC

Turns Ratio - Np/Ns

5T/40T

Primary Inductance, Np, Min.

150µH

Switching Frequency

100kHz

Primary Resistance, Np, Max.

2mOhm

Duty Cycle, Max. 2.5A Operation

88%

Secondary Resistance, Max.

200mOhm

Efficiency At Full Output 2.5A Operation (Calc.)

99.25% (6W losses)

Leakage Inductance 3-4/1-2 Shorted, Typ.

8.0µH

External Heatsink Temperature Max.

+20°C (2.5A operation)

Weight Range

100-250grams

Transformer Clamped To Heatsink

| Size 220 | 1kW-3kW |

Design Example

TRANSFORMER DESIGN | EXAMPLE - PQC2159

Electrical Specifications

Topology

Push Pull

Input Voltage

23-125VDC

Output Voltage Current After Rectification

Primary To Core, Secondary N+1 And Naux1 1100VAC

Secondary To Core 1200VDC

Input Voltage

1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED

2) PATENTED TERMINALS AVAILABLE FOR SHIELDING ON HIGH CURRENT WINDING

Output Voltage/Current After Rectification

Ns1+Ns2 (320W Nom. Power) 13VDC/24.6A

Secondary Ns1 To Core 500VDC

Naux1+Naux2 16VDC/0.04A

Naux To Core 1500VAC

Turns Ratio - Np1/Np2/Ns1/Ns2/Naux1/Naux2

3T/3T/2T/2T/3T/3T

Primary Inductance, Np1 And Np2, Min.

45µH

Switching Frequency

70kHz

Primary Resistance, Rdc, Np1 And Np2, Max.

2.5mOhm

Duty Cycle, Max. Vin=23VDC

88.0%

Secondary Resistance, Rdc, Np1 And Np2, Max.

1.2mOhm

Efficiency At Full Power (Calc.)

99% (3.2W losses)

Leakage Inductance Np1+Np2/Ns1+Ns2 Shorted, Typ.

150nH

Mounted On Heatsink With Max. Temp.

+60°C

Weight Range

100-250grams

Transformer Design

| Size 220 | 1kW-3kW | DESIGN EXAMPLE

Complex problems deserve custom solutions Submit Your Design! | standexelectronics.com/planar-transformer-request-form/
ELECTRICAL SPECIFICATIONS

Inductance At Rated Current
- 2.4µH ±3%

Rated Current
- 100A

Ripple Frequency
- 150kHz

Resistance Max.
- 1mOhm

Minimum Isolation Voltage (Winding To Core)
- 2000VDC

Total Losses
- 10W

Minimum Isolation Voltage (Secondary To Core)
- 100A surge, 28.4VDC/83A

Primary To Secondary And Core
- 2500VAC for 1min

Secondary To Core
- 500VDC

Switching Frequency
- 100kHz

Primary Resistance, Rdc, Np, Max.
- 22mOhm

Duty Cycle At Low Input
- 80.0%

Efficiency At Full Power (Calculated)
- 99.1% (21W losses)

Leakage Inductance 1-2/3-4-5 Shorted, Typ.
- 1.5µH

Baseplate/Heatsink Temperature Max.
- +85°C

Weight Range
- 150-400grams

Mounted On Heatsink With Max. Temp.
- +90°C

TRANSFORMER DESIGN | EXAMPLE - PQC1954 (U.S. PAT. 7,460,002)

Topography
- Full Bridge ZVS

Input Voltage
- 350-750VDC

Minimum Isolation Voltage
- 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
- 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

Output Voltage/Current After Rectification
- 28.4VDC/83A, 100A surge

Secondary Resistance, Rdc, Ns, Max.
- 1mOhm (0.5+0.5mOhm)

Primary Resistance, Rdc, Np, Max.
- 0.5mOhm (0.5+0.5mOhm)

Duty Cycle At Low Input
- 76.0%

Efficiency At Full Power (Calculated)
- 98.0% (20W losses)

Leakage Inductance 1-2/3-4-5 Shorted, Typ.
- 4.5µH

Baseplate/Heatsink Temperature Max.
- +90°C

Weight Range
- 150-400grams

NOTES:
1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

SOLUTIONS | Planar Transformers & Inductors

SIZE 220

1kW-3kW

DESIGN EXAMPLE

INDUCTOR DESIGN | EXAMPLE - PQC2039

SOLUTIONS | Planar Transformers & Inductors

TRANSFORMER DESIGN | EXAMPLE - PQC1954 (U.S. PAT. 7,460,002)

SOLUTIONS | Planar Transformers & Inductors

"Complex problems deserve custom solutions!" Submit Your Design! | standexelectronics.com/planar-transformer-request-form/
Transformer Design | Example - PQC214

- **Topology:** Full Bridge ZVS
- **Input Voltage:** 110-150VDC
- **Output Voltage:** 3100VDC/0.5A (1.55kW max)
- **Turns Ratio:** 4T/60T + 60T
- **Primary to Core:** 500VAC
- **Secondary to Primary: 3000VDC**
- **Switching Frequency:** 100kHz
- **Primary Inductance, Np:** 100µH
- **Secondary Resistance:** 800mOhm
- **Efficiency:** 99.3% (11W losses)
- **Primary Resistance, Np:** 2mOhm
- **Duty Cycle:** 95%
- **Ambient Temperature Max:** +20°C
- **Leakage Inductance:** 0.2µH
- **Airflow Temperature, Speed:** 50CFM
- **Weight Range:** 150-400grams

Notes:
1) For optimal performance, a thermally conductive substrate between ferrite and heatsink should be utilized.
2) Patent terminals available for splitting high current winding.

Inductor Design | Example - PQC2136

- **Inductance at Rated Current:** 0.5µH ±3%
- **Temp. Rise Hot Spot Baseplate (Heatsink Cooling), Max.:** +40°C
- **Rated Current (Ave. ±12.5A Ripple):** 250A
- **Ripple Frequency:** 200kHz
- **Resistance Max.:** 0.2mOhm
- **Minimum Isolation Voltage (Winding to Core):** 500VDC
- **Total Losses:** 18.4W

Notes:
1) For optimal performance, a thermally conductive substrate between ferrite and heatsink should be utilized.
2) Patent terminals available for splitting high current winding.

Complex problems deserve custom solutions Submit Your Design! standexelectronics.com/planar-transformer-request-form/
ELECTRICAL SPECIFICATIONS

Topology
- Full Bridge ZVT

Input Voltage
- 760-840VDC

Primary Inductance, Np, Min.
- 600µH

Secondary Resistance, Ns, Max.
- 18mOhm

Primary Resistance, Rdc, Np, Max.
- 20mOhm

Secondary Resistance, Rdc, Ns, Max.
- 18mOhm

Switching Frequency
- 100kHz

Duty Cycle At Low Input Voltage Max.
- 99.0%

Efficiency At Full Power (Calculated)
- 99.3% (87.4W Losses)

Leakage Inductance 1-2/3-4 Shorted, Typ.
- 1.8µH

External Heatsink Temperature Max.
- +45°C

Weight Range
- 300-800grams

Heatsink Provided By Customer

DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC1901 (U.S. PAT. 7,460,002)

Topology
- Half Bridge ZVS

Input Voltage
- 800VDC

Primary Inductance, Np, Min.
- 4000µH

Secondary Resistance, Ns, Max.
- 0.25mOhm

Switching Frequency
- 50kHz

Duty Cycle, Max.
- 100%

Efficiency At Full Power (Calculated)
- 99.24% (47W Losses)

Leakage Inductance 1-2/3-4-5 Shorted, Typ.
- 3µH

Ambient Temp. Max. (Transfer clamped to heatsink)
- +85°C

Heatsink Provided By Customer

TRANSFORMER DESIGN | EXAMPLE - PQC2123

Topology
- Full Bridge ZVT

Input Voltage
- 1500VDC

Primary Inductance, Np, Min.
- 1600µH

Secondary Resistance, Ns, Max.
- 0.25mOhm

Switching Frequency
- 100kHz

Duty Cycle At Low Input Voltage Max.
- 99.0%

Efficiency At Full Power (Calculated)
- 99.3% (87.4W Losses)

Leakage Inductance 1-2/3-4 Shorted, Typ.
- 1.8µH

External Heatsink Temperature Max.
- +45°C

Weight Range
- 300-800grams

Heatsink Provided By Customer
SOLUTIONS | Planar Transformers & Inductors

TRANSMOG RATIONS | PQC2116

ELECTRICAL SPECIFICATIONS

- **Inductance At Rated Current**: 100µH ±10%
- **Temp. Rise Hot Spot Baseplate, Max.**: +46°C
- **NOTES:**
 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

Parameters

- **Rated Current (Ave. ±12.5A Ripple)**: 32ADC +3App
- **Heatsink Temperature Max.**: +55°C
- **Ripple Frequency**: 100kHz
- **Resistance Max.**: 22mOhm
- **Minimum Isolation Voltage (Winding To Core)**: 2500VDC
- **Total Losses At Max. Current**: 28.7W

INDUCTOR DESIGN | EXAMPLE - PQC2112 (U.S. PAT. 7,460,002)

ELECTRICAL SPECIFICATIONS

- **Inductance At Rated Current**: 100µH ±10%
- **Temp. Rise Hot Spot Baseplate, Max.**: +46°C
- **NOTES:**
 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

Parameters

- **Input Voltage Np1 = 12 Turns (1-2)**: 350-630VDC
- **Minimum Isolation Voltage**: 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED
- **Input Voltage Np2 = 16 Turns (1-3)**: 500-820VDC
- **Primary To Secondary And Core**: 2700VAC
- **Output Voltage/Current After Rectification**: 28VDC/250A (7kW)
- **Secondary To Core**: 500VDC
- **Turns Ratio - Np1/Np2/Ns1/Ns2**: 12T/16T/1T/1T
- **Primary Inductance, Np1 (1-2)/Np2 (1-3), Min.**: 1440/2560µH
- **Switching Frequency**: 100kHz
- **Primary Resistance, Rdc, Np1 (1-2)/Np2 (1-3), Max.**: 14/18mOhm
- **Duty Cycle, At Vin=350VDC Max.**: 99%
- **Secondary Resistance, Rdc, Ns1 + Ns2, Max.**: 0.3mOhm
- **Efficiency At Full Power (Calculated)**: 99.2% (55W losses)
- **Leakage Inductance 1-2/Sec. Shorted, Typ.**: 900nH
- **Leakage Inductance 1-3/Sec. Shorted, Typ.**: 1800nH
- **Weight Range**: 300-800grams

Design Example

TRANSFORMER DESIGN | EXAMPLE - PQC2112

ELECTRICAL SPECIFICATIONS

- **Input Voltage**: High = 12 Turns (1-2)
- **Secondary To Core**: 2700VAC
- **Output Voltage Current After Heat Sink**: 250VDC
- **Ripple Frequency**: 100kHz
- **Resistance Max.**: 22mOhm
- **Minimum Isolation Voltage (Winding To Core)**: 2500VDC
- **Total Losses At Max. Current**: 28.7W

Parameters

- **Size**: 560
- **Type**: 3kW-10kW

Complex problems deserve custom solutions Submit Your Design! | standexelectronics.com/planar-transformer-request-form/
APPLICATIONS
• Fast Charging
• Electric & Hybrid Transportation
• Renewable Energy - Wind & Photovoltaic Systems
• Aerospace & Military (high/repeat reliability)
• Welding, Lasers, & Test Equipment
• DC-DC Converters
• AC-DC resonant designs
• Switch Mode Power Supplies
• Distributed Isolated Power
• Grid Energy Storage

CUSTOMER CONFIGURATIONS
• Soft switching, single or multiple outputs
• Wide switching frequency range
• Input/output voltages
• Optimized turns ratio
• Thermal solutions heat sinks, etc.
• Multiple terminal/termination options
• Value-added assemblies

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

HIGH POWER // 10kW-250kW

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT
Optimum Power Range: 10kW - 250kW
Current Rating Max.: 520A (+30% for THT)
Optimum Frequency Range: 40 - 125kHz
Mounting Options: Through-Hole (THT)

Topologies:
Full Bridge, Full Bridge (ZVS), Half Bridge,
Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:
L 120-145mm
W 94-111mm
H 38-45mm

Length (L) May vary Depending On Terminal
Height (H) Depending On Input & Output Requirements

“Renewable Energy”

Some 9500, 2100, and 4000 are ideal suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra-compact package, as well as excellent repeatability and thermal management characteristics.
TRANSFORMER DESIGN | EXAMPLE - PQC2110

SOLUTIONS | Planar Transformers & Inductors

ELECTRICAL SPECIFICATIONS

- **Topology**: LLC Resonant
- **Input Voltage**: 350-450VDC
- **Primary To Secondary And Core**: 4000VAC
- **Switching Frequency**: 100kHz
- **Primary Inductance, Np, Min.**: 540µH
- **Primary Resistance, Rdc, Np, Max.**: 1.5mOhm
- **Max. Efficiency 24kW Output & Vin=410VDC**: 99.59% (99W losses calc.)
- **Secondary Resistance, Rdc, Ns, Max.**: 3mOhm
- **Ambient Temperature Max.**: +65°C
- **Leakage Inductance 1-2/3-4 Shorted, Typ.**: 220µH
- **External Heatsink Temperature Max.**: +60°C
- **Temp. Rise Hot Spot Baseplate*, Max.**: +59°C

NOTES:

1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING
2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY
3) MULTI LAYER PCB’S REDUCE AC LOSSES

Design Example

SIZE 900

10kW-20kW

TRANSFORMER DESIGN | EXAMPLE - PQC2209

SOLUTIONS | Planar Transformers & Inductors

ELECTRICAL SPECIFICATIONS

- **Topology**: LLC Resonant
- **Input Voltage**: 400VDC
- **Primary To Secondary And Core**: 4000VAC
- **Secondary Current Nom. Rms Half Sec. Current**: 19A RMS sinusoidal
- **Secondary To Core**: 4000VAC
- **Turns Ratio - Np/Ns**: 6T to 6T
- **Secondary To Core**: 4000VAC
- **Switching Frequency**: 100kHz
- **Primary Inductance, Np, Min.**: 1000µH
- **Primary Resistance, Np, Max.**: 5mOhm
- **Duty Cycle At 410VDC Input, Max.**: 98%
- **Secondary Resistance, Ns, Max.**: 10mOhm
- **Efficiency At Full Power (Calculated)**: 99.5% (50W losses)
- **Leakage Inductance 1-2/3-4 Shorted, Typ.**: 0.7µH
- **External Heatsink Temperature Max.**: +80°C
- **Weight Range**: 800-1600grams
- **Temp. Rise Hot Spot External Heatsink*, Max.**: +25°C

NOTES:

1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING
2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY
3) MULTI LAYER PCB’S REDUCE AC LOSSES

Design Example

SIZE 900

10kW-20kW
ELECTRICAL SPECIFICATIONS

TRANSFORMER DESIGN | EXAMPLE - PQC2115

- **Topology:** LLC ZVS Converter
- **Input Voltage:** 200-400VDC
- **Primary Voltage:** 1000VDC (No isolation)
- **Secondary Voltage:** 400VDC (No isolation)
- **Primary to Secondary:** 2500VAC
- **Primary Resistance:** 3mOhm
- **Primary Current:** 175A RMS
- **Primary Efficiency:** 99.5% after rectification
- **Secondary Resistance:** 2mOhm
- **Primary Insulation Voltage:** 1500VDC
- **Secondary Insulation Voltage:** 500VDC
- **Primary Leakage Inductance:** 0.5µH
- **Secondary Leakage Inductance:** 0.5µH
- **Efficiency:** 99.5% (150W losses)
- **Weight:** 2000 grams
- **Ambient Temperature:** +45°C
- **Thermal Impedance:** 0.3°C/W
- **External Heatsink Temperature Max.:** +65°C
- **Internal Heatsink Temperature Max.:** +19°C
- **Internal Heatsink Temperature Max.:** +45°C

NOTES:
1. **Industry Best Form Factor to Power Ratio**
2. **Inherent Isolation Due to PCB Windings**
3. **Unique Termination Options Available For Customizations**
4. **Multi-Layer PCB's Reduce AC Losses**

INDUCTOR DESIGN | EXAMPLE - PQC2089

- **Inductance At Rated Current:** 12µH
- **Temp. Rise Hot Spot Baseplate, Typ.:** +19°C
- **Ripple Frequency:** 50kHz
- **Ripple Current:** 2rdPPm
- **Minimum Isolation Voltage (Windings To Core/Heatsink):** 500VDC
- **Total Losses At Max. Current (Estimated Calc.):** 25W

NOTES:
1. **Custom Tooled Core Unique to Stanex Product Offering**
2. **Large Cross-Sectional Area Reduces Magnetic Flux Density**
3. **Rated Current:** 120ADC
- **Heatsink/Baseplate Temperature Max.:** +70°C
- **Thermal Impedance - Hotspot Heatsink/PCB:** +19°C
- **Core Temperature Max.:** +45°C
- **Weight (Approximate):** 2000 grams

SOLUTIONS | Planar Transformers & Inductors

SIZE 900
10kW-20kW
DESIGN EXAMPLE

SOLUTIONS | Planar Transformers & Inductors

SIZE 2100
10kW-100kW
DESIGN EXAMPLE
SOLUTIONS | Planar Transformers & Inductors

SIZE 4000

100K-250K

DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Full Bridge ZVS</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>450-800VDC</td>
</tr>
<tr>
<td>Minimum Isolation Voltage</td>
<td>45 - 60 A</td>
</tr>
<tr>
<td>Primary In Secondary To Core</td>
<td>2000VAC</td>
</tr>
<tr>
<td>Primary Resistance, Np, Max.</td>
<td>0.17mOhm</td>
</tr>
<tr>
<td>Efficiency At Full Power (Calculated)</td>
<td>99.6% (855W losses)</td>
</tr>
<tr>
<td>Secondary Resistance, Ns1 + Ns2, Max.</td>
<td>0.4mOhm</td>
</tr>
<tr>
<td>Leakage Inductance 1-2/3-4-5 Shorted, Typ.</td>
<td>16nH</td>
</tr>
<tr>
<td>Ambient Temperature Max.</td>
<td>+40°C</td>
</tr>
<tr>
<td>Weight (Approximate)</td>
<td>2000 grams</td>
</tr>
</tbody>
</table>

CUSTOMER CONFIGURATIONS

PQ3218 - 6R0 - 50 - T - R

<table>
<thead>
<tr>
<th>Notes</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PQ32 fixed power inductors w/ferrite core are used in switching power supplies, DC/DC converters, FPGA and low/high profile current, high current PDL converters, feedback control, overload sensing, load drop and shut down detection.</td>
</tr>
</tbody>
</table>

PQ SERIES INDUCTORS // 0.9-6.0µH, 80A Max

Fixed Power Inductors

PQ32 (SMD/THT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance at Rated Current</td>
<td>0.9 - 6.0 µH</td>
</tr>
<tr>
<td>Rated Current Typ.</td>
<td>45 - 60 A</td>
</tr>
<tr>
<td>Height Max.</td>
<td>11 - 18 mm</td>
</tr>
<tr>
<td>Mounting Options</td>
<td>31.7 x 32.5 mm</td>
</tr>
</tbody>
</table>

SOLUTIONS | Planar Transformers & Inductors

IN DEVELOPMENT

PQ SERIES INDUCTORS

“Complex problems deserve custom solutions” Submit Your Design! | standexelectronics.com/planar-transformer-request-form/

PQ SERIES INDUCTORS

“Complex problems deserve custom solutions” Submit Your Design! | standexelectronics.com/planar-inductor-request-form/