

RF REED RELAYS PART II

PARTNER | SOLVE | DELIVER[®]

Introduction

Purpose

 Designing and testing reed relays for switching and carrying high frequency (RF) signals and fast digital pulses

Objectives

- > Show how geometrics directly determines a good RF relay
- The importance of the physical layout of test fixtures determines the test results
- We will show that the RF signals are directly affected by the conductor materials and material existing between the signal path and the relay shielding

- Characteristic impedance (Z) can best be used to measure the results of the reed relay's geometry and their material makeup
- For best RF performance the characteristic
 impedance must be consistent along the entire
 signal path
- Most RF circuits today are 50 Ohms (Ω)

- › How to calculate characteristic impedance
- The characteristic impedance is a vector and is composed of 3 components:
 - 1. Pure resistance of the circuit
 - 2. The capacitive reactance
 - 3. The inductive reactance

The characteristic impedance is given by the following equation:

	$Z = v(R^2 + (X_L - X_C)^2)$
Here:	
	$X_L = 2\pi f L$
	$Xc = 1/(2\pi fC)$
Where:	
XL	is the inductive reactance in $\boldsymbol{\Omega}$
Хс	is the capacitive reactance in $\boldsymbol{\Omega}$
R	is the DC resistance in Ω
Z	is the impedance in Ω
f	is the frequency
L	is the Inductance
C	is the capacitance

The calculation for
 Capacitance and
 inductance are:

 $C = \underline{e A}$

$$L = \mu_0 n dA1^{-2}$$

	C is the capacitance
Here:	
	C = e A/d
	$L = \mu ondA1^2$
Where:	
L	is the inductance
е	is the permittivity or dielectric constant
А	is the area of shield and blades
d	is distance between the plates
μο	is the permeability constant
n	is the number of turns
d	is the length of the signal line
A1	is the area of the signal line/shield

- RF looks at the distributed impedance along the signal path
- Any changes in impedance will reflect part of its signal backwards
- > This results in an actual loss in signal strength

- > The entire signal path length is critical
- The impedance is measured from the signal path to the shield
- > The shield is the ground part of the signal path
- The signal path, the shield and the material between them make up the impedance

RF Relay Schematic

- > The critical components that exist within each RF reed relay
- 4 shield points
- > 2 signal leads

- We will now show you how to calculate the characteristic impedance taking in the different geometries of the reed relay
 - Calculation of the flattened section of reed blade
 - Calculation of the circular section of the reed blade
 - Calculation of the flattened leads as they exit the relay and as they are mounted on a substrate.

RF Continuous Wave Parameters

	Characteristic Impedance
Here:	
	$Z = 60/(v(e)) \ln((D)/A)$
Where:	
Z	is the impedance in $\boldsymbol{\Omega}$
е	is the dielectric constant
D	is the diameter of the shield
А	Is the cross-sectional area of the reed blade
In	is the natural logarithm

Flat Reed Switch Blade

RF Continuous Wave Parameters

Character Impedance

 Calculation of the impedance after the reed exits the shield but still within the molding enclosure

 Calculation of the impedance after the reed exits the molding enclosure into air with a ground plane under the leads

Where \mathcal{E}_r = Relative Dielectric Constant

- W = Width of gap
- S = Width of track
- h = Thickness of dielectric

Testing the Relay

- We design the relay for RF up to, through and out the package where the leads come out
- How the leads on connected to our customer's circuit is critical
- At the junction of our relay and the customer RF
 circuit (normally to a PCB) the customer must match
 the impedance of the relay to their circuit

Testing the Relay

- If the customer does not properly match the impedances, the RF characteristics can fall off dramatically
- This impedance matching requires a knowledgeable
 RF engineer that can add inductance or capacitance
 to the junction of the relay/PCB

Testing the Relay

- When we test our relays for RF characteristics, we make up special RF fixtures for testing the relay
- We also make up special calibration fixtures that compensate for impedance mismatching at the junction of the relay to the PCB

RF Testing

- All the testing information can be shared with our customers
- > The network analyzer information can also be shared electronically with our customers.

Ways to Improve RF Performance

 Controlling the impedance path through the relay maintaining 50 ohms

Ways to Improve RF Performance

Shortening the signal path length by making a smaller relay (length wise)

Shortening the Signal Path

Shortening the Signal Path

Shortening the Signal Path

> Example of how the RM Series eliminates signal path

Improving Isolation

 Using higher AT switches works to a limit, where the sacrifice of increased coil power becomes too big a drain

Improving Isolation

Using a 'T' or 1/2 'T' switching arrangement will increase isolation

1/2 T Switching

RF Parameters - Isolation

- As can be seen the ½ T and T switching will improve the isolation, but the path length has increased
- So the insertion loss and frequency response will suffer

Relays for RF Applications

 Below is a list of the Standex-Meder RF series and their frequency range

RF Relay Series	Frequency Range
LP Series	DC to 500 MHz
SIL Series	DC to 800 MHz
MS Series	DC to 1.5 GHz
CR Series	DC to 7 GHz

CRF Insertion Loss

CRF05-1A Insertion Loss S₂₁

CRF Isolation

Summary

- > Reed Relays are excellent RF switching components
- The Reed Relay RF design is most dependent on its geometric and the material makeup
- $\,$ Customer impedance matching entering and exiting the relay is critical for maintaining the 50 Ω RF path.

PARTNER | SOLVE | DELIVER[®]

FOR MORE INFORMATION ON OUR CAPABILITIES, AND HOW WE CAN PARTNER, SOLVE, AND DELIVER[®] TO YOUR NEEDS, PLEASE VISIT US AT

STANDEXELECTRONICS.COM

